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Abstract. The availability of cheap and effective depth sensors has re-
sulted in recent advances in human pose estimation and tracking. De-
tailed estimation of hand pose, however, remains a challenge since fingers
are often occluded and may only represent just a few pixels. Moreover,
labelled data is difficult to obtain. We propose a deep learning based-
approach for hand pose estimation, targeting gesture recognition, that
requires very little labelled data. It leverages both unlabeled data and
synthetic data from renderings. The key to making it work is to integrate
structural information not into the model architecture, which would slow
down inference, but into the training objective. We show that adding un-
labelled real-world samples significantly improves results compared to a
purely supervised setting.

1 Introduction

We present a new method for hand pose estimation from depth images targeting
gesture recognition. We focus on intentional gestures, bearing communicative
function, with an emphasis on the recognition of fine-grained and smooth ges-
tures. In particular, our aim is to go beyond classification and estimate hand
motion with great accuracy, allowing for richer human-computer interactions.
From an application perspective, this ensures a tight coupling between users
and objects of interest, for instance a cursor, or a manipulated virtual object.

Most existing methods are based on the estimation of articulated pose of
the body or the hands. Made possible by the introduction of cheap and reliable
consumer depth sensors, these representations have revolutionized the field, ef-
fectively putting visual recognition into the hands of non-specialists in vision.
While the robust estimation of body joints is now possible in real time, at least in
controlled settings [1], most systems provide coarse body joints and do not give
the positions of individual joints of the hand. This restricts applications to full
body motion, whereas fine-grained interaction requires hand pose estimation.

Estimating hand pose is inherently more difficult than full body pose. Given
the low resolution of current sensors and the strong noise they produce, fingers
usually are composed of only a few pixels. To make matters worse, individual
fingers frequently are not discernible. Existing work is mostly applicable in sit-
uations where the hands are close to the sensor, which is suited to applications
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Fig. 1. Our model learns from labeled synthetic data and unlabeled real data. Left:
Synthetic depth input images. Middle: Ground truth for synthetic input. Right: Real
depth data.

where the user interacts with a computer he or she is close to or sitting in front
of. However, applications in domotics, mobile robotics and games, to cite a few,
do not fall into this category.

One way to address these issues is to add strong spatial and structural priors
or hard constraints, for instance by fitting an articulated model to the data [2].
The computational complexity of the underlying optimization is a disadvantage
of this solution. Machine learning has a preponderant role, where most solutions
estimate joint positions through an intermediate representation based on hand
part segmentation [3–5], or direct regression of finger joint positions [6], or both
[5]. However, methods based on learning are hungry for labelled training data,
which is difficult to come by. This is especially true for hand pose estimation,
where manual annotation of both joint positions and finger parts is difficult.

Existing work deals with this issue by including priors, for instance by in-
cluding structural information combining the learned predictions with graphical
models [7]. Transductive learning is an alternative, where a few labelled samples
are combined with a large amount of unlabelled samples, and a transfer function
between both sets is learned [5].

In this work we tackle this problem in a structured machine learning setting
by segmenting hands into parts. In a semi-supervised context, a deep convolu-
tional network is trained on a large dataset of labelled synthetic hand gestures
rendered as depth images, as well as unlabelled real depth images acquired with
a consumer depth sensor (Fig. 1). The main contribution of this paper is the
way in which structural information is treated in the learning process. Instead
of combining a learned prediction model with a structured model, for instance
a graphical model, we integrate structural information directly into the learning
algorithm aiming to improve the prediction model. As as consequence, at test
time, pixels are classified independently, keeping the advantages of low compu-
tational complexity and retaining the ability to parallelize.
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The information integrated into the training procedure is related to prior in-
formation which can be assumed on a segmented image. Our method is based on
two contributions. Firstly, contextual information is extracted from local context
in unlabelled samples through a model trained on synthetic labelled examples.
Secondly, similar to body part maps, ground truth hand part segmentation maps
are assumed to feature a single connected region per part, which commonly holds
ignoring rare exceptions due to severe self occlusion. We show that this infor-
mation can be formalized and leveraged to integrate unlabelled samples into the
training set in a semi-supervised setting.

Although we focus on the application of hand pose estimation, the proposed
method is also applicable to other problems involving segmentation of entities,
for example, objects, people, and scenes into parts.

2 Related work

Hand pose estimation — the majority of approaches to pose estimation are
conventionally assigned to one of two groups: 3D model or appearance-based
methods. One of the most notable recent works in the spirit of 3D modeling
and inverse rendering [8] is based on pixelwise comparison of rendered and ob-
served depth maps. Liang et al. [2] apply the iterative closest point (ICP) al-
gorithm to hand pose reconstruction and 3D fingertip localization under spatial
and temporal constraints. Qian et al [9] proposed a hybrid method for realtime
hand tracking using a simple hand model consisting of a number of spheres.
Appearance-based methods typically include global matching of observed visual
inputs with pose instances from training data. Athitsos et al. [10], for example,
use a synthetic dataset featuring a great number of hand shape prototypes and
viewpoints and perform matching by calculating approximate directed Chamfer
distances between observed and synthetic edge images.

A seminal paper on pixel-based body segmentation with random decision
forests [1] gave birth to a whole group of follow-up works including several adap-
tations for hand segmentation [3–5]. Deep learning of representations has been
applied to body part or hand part segmentation [11, 7, 12]. In [13], hand part seg-
mentation using random forests is combined with deep convolutional networks
for gesture recognition.

A great amount of ad-hoc methods have been proposed specifically for hand-
gesture recognition in narrow contexts. Most of them rely on hand detection,
tracking, and gesture recognition based on global hand shape descriptors such
as contours, silhouettes, fingertip positions, palm centers, number of visible fin-
gers, etc. [14, 15]. Similar descriptors have been proposed for depth and RGBD
data [16]. Sridhar et al [17] proposed a hybrid model for hand tracking using a
multi-view RGB camera setup combined with a depth sensor.

Segmentation, structural information and context models — there
has been renewed interest lately in semantic segmentation or semantic labelling
methods. In these tasks, taking into account structural (contextual) information
in addition to local appearance information is primordial. Contextual informa-
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tion often allows the model to disambiguate decisions where local information
is not discriminative enough. In principle, increasing the support region of a
learning machine can increase the amount of context taken into account for the
decision. In practice, this places all of the burden on the classifier, which needs to
learn a highly complex prediction model from a limited amount of training data,
most frequently leading to poor performance. An elegant alternative is to apply
multi-scale approaches. Farabet et al. [18] propose a multi-scale convolutional
net for scene parsing which naturally integrates local and global context.

Structural information can be directly modeled through spatial relationships,
which are frequently formulated as probabilistic graphical models like Markov
Random Fields, Conditional Random Fields [19] or Bayesian networks. Inference
in these models amounts to solving combinatorial problems, which in the case
of high-level contextual information are often intractable in the general case.
In comparison, classical feed forward networks are causal models, which allow
fast inference but which are inherently ill-suited to deal with cyclic dependen-
cies. Architectures which permit feedback connections such as Deep Boltzmann
Machines [20] are difficult to train and do not scale to high-resolution images.

An alternative way to approximate cyclic dependencies with causal models
has recently gained attention in computer vision. In auto-context models [21],
cascades of classifiers are trained, where each classifier takes as input the output
of the preceding classifier and eventual intermediate representations. Follow-
up work recast this task as a graphical model in which inference is performed
through message passing [22, 23]. In [24], a sequential schema is proposed using
randomized decision forests to incorporate semantic context to guide the classi-
fier. In [25], auto-context is integrated into a single random forest, where pixels
are classified breadth first, and each level can use decisions of previous levels of
neighboring pixels. In [11], spatial neighborhood relationships between labels, as
they are available in body part and part segmentation problems, are integrated
into convolutional networks as prior knowledge.

Our proposed method is similar to auto-context in that the output of a first
classifier is fed into a second classifier, which is learned to integrate the context of
the pixel to predict. However, whereas auto-context models aim at repairing the
errors of individual classifiers, our model uses contextual information to extract
structural information from unlabelled images in a semi-supervised setting. The
ability to seamlessly combine unlabeled examples and labeled examples is an
important motivation behind the field of deep learning of representations [26,
27]. Also relevant to our work are paradigms in which the test task is similar but
different than the training task – transfer learning and domain adaptation [28].
Although we do not explicitly treat domain adaptation, in our task we exploit
synthetic data at training time but not at test time.

3 Semi-supervised structured learning

The pixelwise hand segmentation in this work is performed with a classifier
which we call a direct learner. It operates frame-by-frame, ignoring inter-frame
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Fig. 2. The two learning pathways involving a direct learner fd and a context learner
fd. The context learner operates on punctured neighborhood maps n(i,j), where the
(to be predicted) middle pixel is missing.

temporal dependencies. Given the constraint of real-time performance typical for
this class of applications, we keep the test architecture as simple as possible and
focus mainly on developing an effective training procedure to learn meaningful
data representations that are robust to noise typical of real-world data.

The training data consists of input depth maps: X = {X(i)}, i = 1 . . . |X|.
From this whole set of maps, L maps are synthetic and annotated, denoted as
XL = {X(i)}, where i = 1 . . . L, L<|X|. The subset of unlabeled real images is
denoted as XU = {X(i)}, where i > L. The set of ground truth segmentation
maps corresponding to the labelled set is denoted as G = {G(i)}, where i =
1 . . . L, L≤|X|. No ground truth is available for X(i), i>L. Pixels in the different
maps are indexed using a linear index j: X(i,j) denotes the jth pixel of the ith

depth map.

The synthetic frames are rendered using a deformable 3D hand model. A
large variety of viewpoints and hand poses (typical for interactive interfaces) is
obtained under manually defined physical and physiological constraints. For the
sake of generalization, and also keeping in mind that manually labeling data is
tedious and impractical, we do not assume that ground-truth segmentation of
real data is available in any amount. Instead, in parallel with supervised learning
on annotated synthetic images, we use unlabeled frames for global optimization
during training time.

Optimization criteria are based on, first, consistency of each predicted pixel
class with its local neighborhood on the output segmentation map and, second,
global compactness and homogeneity of the predicted hand segments.

For the first task, at training time we introduce an additional classification
path, called the context learner [29], which is trained to predict each pixel’s class
given labels of its local neighborhood. Both the direct and context learners are
first pre-trained simultaneously in a purely supervised way on the synthetic im-
ages (see Fig. 2). The pre-training of the context learner is divided into two steps.
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First, ground truth label maps are used as the training input. After convergence
of the direct learner, its output is used instead for input to the context learner,
and the context learner is fine-tuned to cope with realistic output segmentation
maps.

Let us introduce notation that will be used to formalize the training algo-

rithm: fd(θd) : X(i,j) → Y
(i,j)
d denotes a direct learner with parameters θd map-

ping each pixel j = 1 . . .M in a depth map i (having depth value X(i,j)) into

a corresponding pixel of an output segmentation map Yd with elements Y
(i,j)
d ,

having one of possible k = 1 . . .K values corresponding to hand segments.

fc(θc) : N (i,j) → Y
(i,j)
c denotes a context learner predicting the pixel label

Y
(i,j)
c from its neighborhood N (i,j) on the same segmentation map. The neigh-

borhood is punctured, i.e. the center pixel to be predicted, j, is missing. As we
have already mentioned, this classifier is first pre-trained on the ground truth
images G(i) followed by fine-tuning on the segmentation maps produced by the
direct learner fd.

The probabilistic setting of our training algorithm makes it convient to intro-
duce a difference between a random variable and its realization. In the following
and as usual, uppercase letters denote random variables or fields of random vari-
ables and lower case letters denote realizations of values of random variables or
of fields of random values. Realizations of random fields X, Yc, Yd and G de-
fined above are thus denoted as x, yc, yd and g. Furthermore, P (X=x) will be
abbreviated as P (x) when it is convenient. Fig. 2 illustrates the configuration of
the two learners fd and fc and the corresponding notation.

The loss function used for training the direct learner fd in conjunction with
the context learner fc is composed of three terms whose activation depends on
whether or not ground truth labels for the given training image are available:

Q = Qsd +Qsc +Qu, (1)

where Qsd is responsible for training of the direct learner, Qsc corresponds to
the context learner (both) and Qu is an unsupervised term serving as a natural
regularizer.

During training, annotated and unannotated examples are considered in-
terchangeably, starting with labeled data (supervised learning) followed by an
increase in the amount of unlabeled samples (unsupervised domain adaptation).

3.1 Supervised terms

Supervised terms classically link the predicted class of each pixel to the ground
truth hand part label. The first term Qsd is formulated as vanilla negative log-
likelihood (NLL) for pixel-wise classification with the direct learner fd.

Qsd(θd |XL ) = −
L∑
i=0

M∑
j=0

logP
(
Y

(i,j)
d = g(i,j)

∣∣∣x(i,j); θd) (2)
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Recall here, that Y
(i,j)
d is the output of the direct learner and g(i,j) is a ground

truth label.
The second term Qsc is also a negative log-likelihood loss for pixelwise clas-

sification, this time using the context learner fc. Learning of θc proceeds in two
steps. First, ground truth segmentation maps are fed to the learner, denoted as

n
(i,j)
G , minimizing NLL:

Q(1)
sc (θc |G) = −

L∑
i=0

M∑
j=0

logP
(
Y (i,j)
c = g(i,j)

∣∣∣N (i,j) = n
(i,j)
G ; θc

)
(3)

After convergence, in a second phase, segmentation maps produced by the direct

learner are fed into the context learner, denoted as n
(i,j)
fd

.

Q(2)
sc (θc |fd(XL)) = −

L∑
i=0

M∑
j=0

logP
(
Y (i,j)
c = g(i,j)

∣∣∣N (i,j) = n
(i,j)
fd

; θc

)
(4)

Parameters θd are kept fixed during this step, and depth maps are not used
during both steps.

3.2 Unsupervised terms

In the unsupervised case, ground truth labels are not available. Instead, the loss
function measures structural properties of the predicted segmentation at two
different scales, either on context (at a neighborhood level), or globally on the
full image. The estimated properties are then related to individual pixelwise loss.

Qu = f(Qloc, Qglb) (5)

Local structure Qloc is a term capturing local structure. It favors predictions
which are consistent with other predictions in a local neighborhood. In particular,
it favors predictions where the direct learner agrees with the context learner
(recall that the context learner is not learned in this phase).

This term is formulated as a conditional negative likelihood loss. For each
given pixel, if both classifiers fd and fc (the latter one operates on the output
of the former one) agree on the same label, this pixel is used to update param-
eters θd of the direct learner and the error is minimized using the classical NLL
scenario treating the predicted label as corresponding to the ground truth:

Qloc(θd |XU ) = −
M∑
j=0

I
y
(i,j)
d =y

(i,j)
c

logP
(
Yd = y(i,j)c

∣∣∣x(i,j); θd, θc), (6)

where Iω=1 if ω holds and 0 else. In this case the parameters θc of the context
learner remain unchanged. The indicator function is non-smooth with respect
to the parameters. For backpropagation, we treat it as a constant once both
segmentation maps are computed.
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Fig. 3. Global structural information which can be extracted from a segmented image
even if ground truth labels are not available. Small circles with thin black borders
contain segmented pixels which are far away from the principal pixel mass of the given
hand part, indicated by the barycenter of the hand part. The global unsupervised loss
term Qglb punishes these results. Large circles with thick blue borders show the same
content after a single network parameter update using Qglb.

Global structure Qglb is a term capturing global structure. It favors pre-
dictions which fit into global image statistics and penalizes the ones which do
not by changing parameters in the direction of a more probable class. Techni-
cally, this term aims on minimizing variance (in terms of pixel coordinates) of
each hand segment. Fig. 3 illustrates the intuitive understanding of this terms.
Ground truth labels are not available for the real images dealt with in this
part, but there is intrinsic structural information which can be extracted from
a segmented image, and which is related to strong priors we can impose on the
segmentation map. In particular, unlike general segmentation problems, body
and hand part segmentation maps contain a single connected region per hand
part label (ignoring cases of strong partial self-occlusion, which are extremely
rare). In Fig. 3, small circles with thin black borders contain segmented pixels
which are not connected to the principal region of the given hand part, indicated
by the barycenter of the pixels of this hand part. The global unsupervised loss
term Qglb punishes these results. Large circles with thick blue borders show the
same content after a single network parameter update using Qglb.

We formalize this concept as follows. For each class k present in the output
map Yd, barycentric coordinates of the corresponding segment are calculated:

Rk =

∑
j:Y

(i,j)
d =k

P (y
(i,j)
d |x(i,j))r(i,j)

∑
j:Y

(i,j)
d =k

P (y
(i,j)
d |x(i,j))

, (7)
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where pixel coordinates, in vector form, are denoted as r(i,j).
If
∣∣r(i,j) −Rk

∣∣ > τ , i.e. the pixel (i, j) is close enough to its barycenter (τ
is estimated from the labelled synthetic data), then the pixel is considered as
correctly classified and used to update parameters of the direct learner θd. The
loss function term for one pixel (i, j) is given as follows:

Q+
glb(θd

∣∣∣y(i,j)d ) = −F (i)
yd

logP
(
Yd = y

(i,j)
d

∣∣∣x(i,j), θd, θc), (8)

where F
(i)
k is a weight related to the size of class components:

F
(i)
k = |{j : Y

(i,j)
d = k}|−α (9)

and α > 0 is a gain parameter. In the opposite case, when
∣∣r(i,j) −Rk

∣∣ ≤ τ ,
the current prediction is penalized and the class γ corresponding to the closest
segment in the given distance τ is promoted:

Q−
glb(θd

∣∣∣y(i,j)d ) = −F (i)
γ logP

(
Yd = γ

∣∣∣x(i,j), θd, θc), (10)

where
γ = argmin (|r(i,j) −Rk|). (11)

This formulation is related to the k-means algorithm. However, data points in
our setting are embedded in two spaces: the space spanned by the network
outputs (or, alternatively, feature space), and the 2D geometric space of the
part positions. Assigning cluster centers requires therefore optimizing multiple
criteria and distances in heterogeneous spaces. Other clustering costs could be
also adopted.

Integrating local and global structure Local structure and global structure
are fused emphasizing agreement between both terms. In particular, activation
of the penalizing global term (which favors parameters pushing a pixel away
from currently predicted class) is confirmed by a similar structural information
captured by the local term (Qloc = 0):

Qu = βlocQloc + βglb


Q+
glb if

∣∣r(i,j) −Rk

∣∣ ≤ τ,
Q−
glb if

∣∣r(i,j) −Rk

∣∣ > τ and Qloc = 0,

0 else

(12)

where βloc and βglb are weights.
Combining the two terms, Qloc and Qglb, is essential as they are acting in an

adversarial way. The local term alone leads to convergence to a trivial solution
when all pixels in the image are assigned to the same class by both classifiers.
The global term favors multi-segment structure composed of homogeneous re-
gions, while exact shapes of the segments may be distorted as to not satisfy the
desirability of of compactness. The two terms acting together, as well as mixing
the labeled and unlabeled data, allow the classifier to find a balanced solution.
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Fig. 4. The proposed deep convolutional architecture of a single learner.

4 Architecture

The direct and context learners are based on a convolutional network architec-
ture and have the same general structure (see Fig. 4) including three consecutive
convolutional layers F1, F2 and F3 with rectified linear activation units (ReLU).
Layers F1 and F2 are followed by 2× 2 max pooling and reduction.

As opposed to most existing methods for scene labeling, instead of randomly
sampling pixels (or patches), training is performed image-wise, i.e. all pixels from
the given image are provided to the classifier at once and each pixel gets assigned
with an output class label based on information extracted from its neighborhood.

Applying of the convolutional classifier with pooling/reduction layers to an
image in the traditional way would lead to loss in resolution by a factor of 4 (in
the given configuration). On the other hand, simply not reducing the image reso-
lution will prevent higher layers from learning higher level features, as the size of
the filter support does not grow with respect to the image content. To avoid this
dilemma, we employ specifically designed splitting functions originally proposed
for image scanning in [30] and further exploited in OverFeat networks [31]. Intu-
itively speaking, each map at a given resolution is reduced to four different maps
of lower resolution using max pooling. The amount of elements is preserved, but
the resolution of each map is lower compared to the maps of previous layers.

In more detail, let us consider the output of the first convolutional layer F1

of the network. Once the output feature maps are obtained, 4 virtual extended
copies of them are created by zero padding with 1) one column on the left, 2) one
column on the right, 3) one row on top, 4) one row in the bottom. Therefore, each
copy will contain the original feature map but shifted in 4 different directions.
On the next step, we apply max pooling (2 × 2 with stride 2 × 2) to each of
the extended maps producing 4 low-resolution maps. By introducing the shifts,
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pixels from all extended maps combined together can reconstruct the original
feature map as if max pooling with stride 1×1 had been applied. This operation
allows the network to preserve results of all computations for each pixel on
each step and, at the same time, perform the necessary reduction, resulting in a
significantly speed up during training and testing.

After pooling, convolutions of the following layer F2 are applied to all 4 low-
resolution maps separately (but in parallel). The same procedure is repeated
after the second convolutional layer F2, where each of 4 branches is split again
into 4, producing 16 parallel pathways overall. If necessary, the algorithm can
be extended to an arbitrary number of layers and employed each time when
reduction is required.

All outputs of the third convolutional layer F3 are flattened and classified
with an MLP, producing a label for each pixel. Finally, the labels are rearranged
to form the output segmentation map corresponding to the original image.

The direct and the context learners have the same architecture with the
only difference that the middle parts of the first layer filters of the context
learner are removed. It helps to prevent the network from converging to a trivial
solution where a pixel label is produced by directly reproducing its input. This
is especially important on the initial training stage, when the context learner is
trained on ground truth segmentation maps.

5 Experiments

For this project, we have created a vast collection of about 60000 synthetic
training samples, including both normalized 8 bit depth maps and ground truth
segmentations with resolution 640×640 pixels. Hand shapes, proportions, poses
and orientations are generated with a random set of parameters. Each pose is
captured from 5 different camera view points sampled randomly for each frame.
An additional set of 6000 images is used for validation and testing.

The unlabeled part of the training set consists of 3000 images captured with
a depth sensor. To evaluate the algorithm performance on the real-world data,
we have manually annotated 50 test samples. An example of a ground truth
segmentation map is shown in Fig. 5, where the hand is divided into 20 segment
classes. Background pixels are set to 0 and assigned a class label of 0.

For training, synthetic depth maps are downsampled by a factor of 4 (to
imitate real world conditions), and cropped. As a result, the network input is of
size 80× 80 pixels.

Both direct and context learners have 3 convolutional layers F1, F2 and F3

with 16, 32, 48 filters respectively, where each filter is of size 7× 7. Max pooling
2 × 2 is performed after the first two convolutional layers. The hidden layer is
composed of 150 units. Thus, each pixel is classified based on its receptive field
of size 46× 46. In the context learner, the middle parts of size 3× 3 of the first
layer filters are removed. The learning rate is initially set to 0.1. Unsupervised
learning parameters are set to βloc = 0.1, βglb = 1.2, and α = 0.5.
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Table 1. Performance of networks trained with different objective functions.

Loss function
Training

data
Test
data

Accuracy Average per class

Qsd (supervised baseline) synth.
synth. 85.90% 78.50%
real 47.15% 34.98%

Qsd + Qloc + Qglb all
synth. 85.49% 78.31%

(semi-supervised, ours) real 50.50% 43.25%

Table 2. Perf. improvement on a real image after updating parameters using different
supervised and unsupervised terms, estimated as an average over 50 real images.

Terms Qloc Qglb
+ Qglb

+ + Qglb
− Qloc + Qglb

+ + Qglb
− Qsd

Requires labels no no no no yes

Gain in % points +0.60 +0.36 +0.41 +0.82 +16.05

The current pure CPU implementation of the entire pipeline runs at 436 ms
per frame (with a potential speed-up by a factor of 20-30 [13] on GPU).

The training procedure is started with purely supervised learning by back-
propagation which proceeds until 50% of the synthetic training data is seen by
the network. From this moment on, we replace 10% of the training set with un-
labeled real world samples. A single training image consisting of 80× 80 = 6400
pixel samples is used for each step of gradient descent.

Comparative performance of classifiers trained by including and excluding
different unsupervised terms of the loss function is summarized in Table 1. Ex-
ploiting unlabeled real data for unsupervised training and network regularization
has proven to be generally beneficial, especially for reconstruction of small seg-
ments (such as finger parts), which leads to a significant increase of average
per-class accuracy. The bar plot on the Fig. 5 demonstrates significant improve-
ment of recognition rates for almost all classes except for the first, base ”palm”
class which can be seen as a background for a hand image against which finger
segments are usually detected. Therefore, this reflects the fact that more con-
fident detection in the case of semi-supervised training comes together with a
certain increase in the amount of false positives.

Table 2 illustrates the impact of one update of the network parameters for
different loss functions on the performance on a given image which was used
for computing the gradients. We note that a combination of two competitive
unsupervised terms (local and global) produces a more balanced solution than
the same terms separately.

The local term alone forces the network to favor the most statistically prob-
able class (i.e. the “palm” in our settings), while the global one on its own tends
to shift boundaries between regions producing segmentation maps similar to a
Voronoi diagram. In the latter case, the number of cells is typically defined by
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Fig. 5. Left: average accuracy per class obtained with the supervised method (in blue)
and with semi-supervised structured learning (in red); Right: labeling of hand segments.

an initial guess of the network on the given image and is unlikely to be changed
by global unsupervised learning alone.

Therefore we stress the importance of pre-training the direct and context
learners on the synthetic data in order to be capable of producing structurally
representative initial predictions for the unlabeled data. Furthermore, the fre-
quency of supervised gradient updates during the final training stage should
remain significant to prevent training from diverging.

Output segmentation maps produced by the proposed method are shown
in Fig. 6. Fig. 7 shows several “problematic” images where the baseline super-
vised network performs poorly. Our algorithm is capable of finding regions which
would not have otherwise been reconstructed and often leads to more consistent
predictions and a reduction in the amount of noise in the segmentation maps.

6 Conclusion

We have proposed a novel method for part segmentation based on convolutional
learning of representations. Unlike most deep learning methods which require
large amounts of labeled data, we do not assume that ground-truth segmenta-
tion of real data is available. Our main contribution is a training method which
exploits i) context learning; and ii) unsupervised learning of local and global
structure, balancing a prior for large homogenous regions with pixel-wise accu-
racy. By integrating structural information into learning rather than the model
architecture, we retain the advantages of very fast test-time processing and the
ability to parallelize. The use of synthetic data is an important part of our train-
ing strategy. A potential area of further improvement is domain adaptation from
synthetic to real images.
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Fig. 6. Output segmentation maps produced by the semi-supervised network for real-
world images.

Fig. 7. Challenging examples. Top row: examples where the baseline method has diffi-
culty in segmentation. Bottom row: the results of our proposed algorithm on the same
examples.
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